
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 21

Public Integrity Auditing for Shared Dynamic

Cloud Data with Group User Revocation

Mr. Mangesh Nagarkar
1
, Prof. Patole R.G

2

Department of Computer Engineering, G.H. Raisoni College of Engineering and Management, Ahmednagar1

Department of Information Technology, G. H. Raisoni College of Engineering and Technology, Wagholi2

Abstract: The advent of the cloud computing makes storage outsourcing become a rising trend, which promotes the

secure remote data auditing a hot topic that appeared in the research literature. Recently some research consider the

problem of secure and efficient public data integrity auditing for shared dynamic data. However, these schemes are still
not secure against the collusion of cloud storage server and revoked group users during user revocation in practical

cloud storage system. In this paper, we figure out the collusion attack in the exiting scheme and provide an efficient

public integrity auditing scheme with secure group user revocation based on vector commitment and verifier-local

revocation group signature. We design a concrete scheme based on the our scheme definition. Our scheme supports the

public checking and efficient user revocation and also some nice properties, such as confidently, efficiency, count

ability and traceability of secure group user revocation. Finally, the security and experimental analysis show that,

compared with its relevant schemes our scheme is also secure and efficient.

Index Terms: Public integrity auditing, dynamic data, victor commitment, group signature, cloud computing.

1. INTRODUCTION

The development of cloud computing motivates

enterprises and organizations to outsource their data to

third-party cloud service providers (CSPs), which will

improve the storage limitation of resource constrain local

devices. Recently, some commercial cloud storage

services, such as the simple storage service (S3) [1] on-

line data backup services of Amazon and some practical
cloud based software Google Drive [2], Dropbox [3],

Mozy [4], Bitcasa [5], and Memopal [6], have been built

for cloud application. Since the cloud servers may return

an invalid result in some cases, such as server

hardware/software failure, human maintenance and

malicious attack [7], new forms of assurance of data

integrity and accessibility are required to protect the

security and privacy of cloud user’s data.

To overcome the above critical security challenge of

today’s cloud storage services, simple replication and

protocols like Rabin’s data dispersion scheme [8] are far

from practical application.

The formers are not practical because a recent IDC report

suggests that data-generation is outpacing storage

availability [9]. The later protocols ensure the

availability of data when a quorum of repositories, such

as k-out-of-n of shared data, is given. However, they do

not provide assurances about the availability of each

repositories, which will limit the assurance that the

protocols can provide to relying parties.

For providing the integrity and availability of remote

cloud store, some solutions [10], [11] and their variants

[12], [13], [14], [15], [16], [17], [18] have been

proposed. In these solutions, when a scheme supports

data modification, we call it dynamic scheme, otherwise

static one (or limited dynamic scheme, if a scheme could

only efficiently support some specified operation, such as

append). A scheme is publicly verifiable means that the data

integrity check can be performed not only by data owners,

but also by any third-party auditor. However, the dynamic

schemes above focus on the cases where there is a data

owner and only the data owner could modify the data.

Recently, the development of cloud computing boosted

some applications [19], [20], [21], where the cloud service

is used as a collaboration platform. In these software

development environments, multiple users in a group need

to share the source code, and they need to access, modify,

compile and run the shared source code at any time and

place. The new cooperation network model in cloud makes

the remote data auditing schemes become infeasible, where

only the data owner can update its data. Obviously, trivially

extending a scheme with an online data owner to update the

data for a group is inappropriate for the data owner. It will

cause tremendous communication and computation
overhead to data owner, which will result in the single point

of data owner. To support multiple user data operation,

Wang et al. [22] proposed a data integrity based on ring

signature. In the scheme, the user revocation problem is not

considered and the auditing cost is linear to the group size

and data size. To further enhance the previous scheme and

support group user revocation, Wang et al. [23] designed a

scheme based on proxy re-signatures. However, the scheme

assumed that the private and authenticated channels exist

between each pare of entities and there is no collusion

among them. Also, the auditing cost of the scheme is linear
to the group size. Another attempt to improve the previous

scheme and make the scheme efficient, scalable and

collusion resistant is Yuan and Yu [24], who designed a

dynamic public integrity auditing scheme with group user

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 22

revocation. The authors designed polynomial

authentication tags and adopt proxy tag update

techniques in their scheme, which make their scheme

support public checking and efficient user revocation.

However, in their scheme, the authors do not consider
the data secrecy of group users. It means that, their

scheme could efficiently support plaintext data update

and integrity auditing, while not ciphertext data. In their

scheme, if the data owner trivially shares a group key

among the group users, the defection or revocation any

group user will force the group users to update their

shared key. Also, the data owner does not take part in the

user revocation phase, where the cloud itself could

conduct the user revocation phase. In this case, the

collusion of revoked user and the cloud server will give

chance to malicious cloud server where the cloud server
could update the data as many time as designed and

provide a legal data finally. To the best of our

knowledge, there is still no solution for the above

problem in public integrity auditing with group user

modification.

The deficiency of above schemes motivates us to explore

how to design an efficient and reliable scheme, while

achieving secure group user revocation. To the end, we

propose a construction which not only supports group

data encryption and decryption during the data

modification processing, but also realizes efficient and
secure user revocation. Our idea is to apply vector

commitment scheme [25] over the database. Then we

leverage the Asymmetric Group Key Agreement

(AGKA) [26] and group signatures [27] to support

ciphertext data base update among group users and

efficient group user revocation respectively. Specifically,

the group user uses the AGKA protocol to

encrypt/decrypt the share database, which will guarantee

that a user in the group will be able to encrypt/decrypt a

message from any other group users. The group signature

will prevent the collusion of cloud and revoked group
users, where the data owner will take part in the user

revocation phase and the cloud could not revoke the data

that last modified by the revoked user.

1.1 Our Contribution

In this paper, we further study the problem of construing

public integrity auditing for shared dynamic data with

group user revocation. Our contributions are three folds:

1) We explore on the secure and efficient shared data

integrate auditing for multi-user operation for

ciphertext database.
2) By incorporating the primitives of victor

commitment, asymmetric group key agreement and

group signature, we propose an efficient data auditing

scheme while at the same time providing some new

features, such as traceability and countability.

3) We provide the security and efficiency analysis of our

scheme, and the analysis results show that our scheme

is secure and efficient.

Figure 1 the cloud storage model

1.2 Organization

The rest of this paper is organized as follows: In section 2,

we describe the problem formulation. In section 3, we
present the used preliminaries. Then, we provide the detail

of our scheme in section 4. We conduct the security and

efficiency analysis in section 5 and section 6 and leave the

related works in section 7. Finally, we show our conclusion

in section 8.

2. PROBLEM FORMULATION

In this section, we first describe the cloud storage model of

our system. Then, we provide the threat model considered

and security goals we want to achieve.

2.1 Cloud Storage Model

In the cloud storage model as shown in Figure 1, there are

three entities, namely the cloud storage server, group users

and a Third Part Auditor (TPA).

Group users consist of a data owner and a number of users

who are authorized to access and modify the data by the

data owner. The cloud storage server is semi-trusted, who

provides data storage services for the group users. TPA

could be any entity in the cloud, which will be able to

conduct the data integrity of the shared data stored in the

cloud server. In our system, the data owner could encrypt
and upload its data to the remote cloud storage server. Also,

he/she shares the privilege such as access and modify

(compile and execute if necessary) to a number of group

users. The TPA could efficiently verify the integrity of the

Data last modified Data last modified legitimate data

Figure 2. Security problem of server proxy group user

revocation

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 23

authorized by user Eve by cloud server by the data owner

data stored in the cloud storage server, even the data is

frequently updated by the group users. The data owner is

different from the other group users, he/she could

securely revoke a group user when a group user is found
malicious or the contract of the user is expired.

2.2 Threat Model and Security Goals
Our threat model considers two types of attack:

1) An attacker outside the group (include the revoked

group user cloud storage server) may obtain some

knowledge of the plaintext of the data. Actually, this

kind of attacker has to at least break the security of

the adopted group data encryption scheme.

2) The cloud storage server colludes with the revoked
group users, and they want to provide a illegal data

without being detected.

Actually, in cloud environment, we assume that the

cloud storage server is semi-trusted. Thus, it is

reasonable that a revoked user will collude with the

cloud server and share its secret group key to the cloud

storage server. In this case, although the server proxy

group user revocation way [24] brings much

communication and computation cost saving, it will

make the scheme insecure against a malicious cloud

storage server who can get the secret key of revoked
users during the user revocation phase. Thus, a malicious

cloud server will be able to make data m, last modified

by a user that needed to be revoked, into a malicious data

m′. In the user revocation process, the cloud could make

the malicious data m′ become valid. To overcome the

problems above, we aim to achieve the following

security goals in our paper:

1) Security. A scheme is secure if for any database and

any probabilistic polynomial time adversary, the

adversary can not convince a verifier to accept an
invalid output.

2) Correctness. A scheme is correct if for any database

and for any updated data m by a valid group user, the

output of the verification by an honest cloud storage

server is always the value m. Here, m is a ciphertext

if the scheme could efficiently support encrypted

database.

3) Efficiency. A scheme is efficient if for any data, the

computation and storage overhead invested by any

client user must be independent of the size of the

shared data.

4) Countability. A scheme is countable, if for any data

the TPA can provide a proof for this misbehavior,

when the dishonest cloud storage server has tampered

with the database.

5) Traceability. We require that the data owner is able

to trace the last user who update the data (data item),

when the data is generated by the generation

algorithm and every signature generated by the user is

valid.

3. PRELIMINARIES

Our scheme makes use of bilinear groups. The security of

the scheme depends on the Strong DiffieHellman

assumption and the Decision Linear assumption. In this
section, we review the definitions of bilinear groups and the

complexity assumption.

3.1 Bilinear Groups

We review a few concepts related to bilinear maps, which

follow the notation of [28]. Let G1 and G2 be two

multiplicative cyclic groups of prime order p, g1 is a

generator of G1 and g2 is a generator of G2. ψ is an

efficiently computable isomorphism from G2 to G1 with

ψ(g2) = g1, and e : G1 × G2 → GT is a bilinear map with

the following properties:

1) Computability: there exits an efficiently computable

algorithm for computing map e;

2) Bilinearity: for all u ∈ G1, v ∈ G2 and a,b ∈ Zp, e(ua,vb)

= e(u,v)ab;

3) Non-degeneracy: e(g1,g2) 6= 1.

3.2 Complexity Assumption

The security of our scheme relies on the difficulty of some

problems: the Strong Diffie-Hellman problem, the Decision

Linear problem, and the Computational Diffie-Hellman
problem. We describe these problems as follows.

Definition 1. q-Strong Diffie-Hellman problem. Let G1, G2

be cyclic group of prime order p, where possibly G1 = G2.

Let g1 be a generator of G1 and g2 be a generator of G2.

Given a (q + 2) − as input,

output a pair where x ∈ Z∗p.
The assumption could be used to construct short signature

scheme without random oracles [29]. The assumption has

properties similar to the Strong-RSA assumption [30] and

the properties are adopted for building short group signature

in our scheme.

Definition 2. Decision Linear problem. Let g1 be a
generator of G1, and G1 be a cyclic group of prime order p.

Given u, v, h, ua, ub,uc ∈ G1 as input, output yes if a + b = c

and no otherwise.

Boneh et al. [31] introduced the Decision Linear assumption

and they proved that the problem is intractable in generic

bilinear groups.

Definition 3. Square Computational Diffie-Hellman

(Square-CDH) problem. With g ∈ G1 as above, given (g,gx)

for x ∈R Zp as input, output gx2.
It has been proved that the Square-CDH assumption is

equivalent to the classical CDH assumption [32], [33].

3.3 Vector Commitment

Commitment is a fundamental primitive in cryptography

and it plays an important role in security protocols such as

voting, identification, zero-knowledge proof, etc. The

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 24

hiding property of commitment requires that it should

not reveal information of the committed message, and

the binding property requires that the committing

mechanism should not allow a sender to change his/her

mind about the committed message.

Recently, Catalano and Fiore [25] put forward a new

primitive called Vector Commitment. Vector

Commitment satisfies position binding that an adversary

should not be able to open a commitment to two different

values at the same position, and the Vector Commitment

is concise, which means that the size of the commitment

string and its openings have to be independent of the

vector length. We provide the formal definition of Vector

Commitment [25] as follows.

Definition 4. (Vector Commitment) A vector

commitment scheme is a collection of six polynomial-

time algorithms (VC.KeyGen, VC.Com, VC.Open,

VC.Ver, VC.Update, VC.ProofUpdate) such that:

VC.KeyGen(1k,q). Given the security parameter k and

the size q of the committed vector (with q = poly(k)), the

key generation outputs some public parameters pp.

VC.Compp(m1,...,mq). On input a sequence of q

messages m1,...,mq ∈ M (M is the message space) and

the public parameters pp, the committing algorithm

outputs a commitment string C and an auxiliary

information aux.

VC.Openpp(m,i, aux). This algorithm is run by the

committer to produce a proof i that m is the i-th

committed message. In particular, notice that in the case
when some updates have occurred the auxiliary

information aux can include the update information

produced by these updates.

VC.Verpp(C,m,i,Λi). The verification algorithm accepts

(i.e., it outputs 1) only if Λi is a valid proof that C was

created to a sequence m1,...,mq such that m = mi.

VC.Updatepp(C,m,m′,i). This algorithm is run by the

committer who produces C and wants to update it by

changing the i-th message to m′. The algorithm takes as

input the old message m, the new message m′ and the

position i. It outputs a new commitment C’ together with

an update information U.

VC.ProofUpdatepp(C,Λj,m′,i,U). This algorithm can be

run by any user who holds a proof Λj for some message

at position j w.r.t. C, and it allows the user to compute an

updated proof Λ′j (and the updated commitment C′) such

that Λ′j will be valid with regard to C′ which contains m′

as the new message at position i. Basically, the value U

contains the update information which is needed to

compute such values.

The primitive of verifiable database with efficient update

based on vector commitment is useful to solve the

problem of verifiable data outsourcing. Recently, Chen et

al. [34], [35] figured out that the basic vector commitment

scheme suffers from forward automatic update attack and

backward substitution update attack. They also proposed a

new framework for verifiable database with efficient update
from vector commitment, which is not only public

verifiable for dynamic outsourced data but also secure

against the two attacks. The solution in their scheme is easy

to apply in our scheme, which will overcome the attacks

they figured out in our scheme.

3.4 Group Signature with User Revocation

We present the formal definition of group signatures with

verifier-local revocation [27] as follows.

Definition 5. A verifier-local group signature scheme is a

collection of three polynomial-time algorithms

(VLR.KeyGen, VLR.Sign, VLR.Verify), which behaves as

follows:

VLR.KeyGen(n). This randomized algorithm takes as input

a parameter n, the number of members of the group. It

outputs a group public key gpk, an n-element vector of user

keys gsk =

(gsk[1],gsk[2],...,gsk[n]), and an n-element vector of user

revocation tokens grt, similarly indexed.

VLR.Sign(gpk,gsk[i],M). This randomized algorithm takes

as input the group public key gpk, a private key gsk[i], and

a message M ∈ {0,1}∗, and returns a signature σ.

VLR.Verify(gpk,RL,σ,M). The verification algorithm takes

as input the group public key gpk, a set of revocation tokens

RL (whose elements form a subset of the elements of grt),

and a purported signature σ on a message M. It returns

either valid or invalid. The latter response can mean either
that σ is not a valid signature, or that the user who generated

it has been revoked.

4. SCHEME CONSTRUCTION

In this section, we provide the formal definition of our

scheme according to the definition in [23], [24]. Then, we

design the concrete scheme based on our definition.

4.1 New Framework
We consider the database DB as a set of tuple (x,mx), where

x is an index and mx is the corresponding value. Informally,
a public integrity auditing scheme with updates allows a

resource-constrained client to outsource the storage of a

very large database to a remote server. Later, the client can

retrieve and update the database records stored in the server

and publicly audit the integrity of the updated data.

According to previous researches, the proposed framework

of our public integrity auditing for shared dynamic cloud

data with secure group user revocation is given as follows:

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 25

Setup(1k,DB):

Let the database be DB = (i,mi) for 1 ≤ i ≤ q and the

database is shared by a group of n users with only one

data owner.

1) The data owner run the key generation algorithm of

vector commitment to obtain the public parameters pp

← VC.KeyGen(1k,q).

2) Run the key generation of verifier-local revocation to

obtain the user keys and revocations (gsk, grt) ←

VLR.KeyGen(1k,n), where gsk = (gsk[1],gsk[2]...gsk[n])

and an n-element vector of user revocation tokens grt.

3) Run the computing algorithm to compute commitment

and auxiliary information (C, aux) ←

VC.Compp(c1,...,cq). Let the current database modifier

be group user s(0 ≤ s ≤ n − 1), and

(gsk[s],gpk) be the secret/public key pair of the group

user. Let be the
commitment on the latest database vector, where t is a

counter with 0 as its initial value.

4) Run the signing algorithm over the commitment C.

Specially, for the t-th time the group user s(0 ≤ s ≤ n −

1), whose secret key is gsk[s], compute and output

a signature σt ← VLR.Sign(gpk,gsk[s],{C(t − 1),Ct,t}).

Then, sends the signature σt to the cloud storage server.

If σt is valid, then the server computes C(t) = σt·Ct. Also,

the cloud storage server adds the

information of Σ(t) = (C(t − 1),Ct,t,σt) to aux.

5) Finally, set public key parameter

PK = (pp,gpk,C(t − 1),C(t)).

Query(PK, PP, aux,DB,i):

1) A group user run the opening algorithm to compute a

proof Λi ← VC.Openpp(ci,i, aux), where Λi is the proof

of the i-th committed message and return τ = (ci,Λi,Σ(t)).

Verify(PK,RL,i,τ):
1) Parse τ = (ci,Λi,Σ(t)). If the signature is valid after

running the algorithm VLR.Verify(gpk,RL,Σ(T)). Then,

run the verification algorithm of vector commitment

{0,1} ← VC.Verpp(C(t),σt,ci,i,Λi). The algorithm

accepts when it output 1, which means that Λi is a valid

proof that Ct was created by a sequence c1,...cq, such that

c = ci. Otherwise, return an error ⊥.

Update(i,τ):

1) A group user first queries and verifies the database to

make sure the current database is valid. More precisely,

the group user obtain τ ←Query(PK, PP, aux,DB,i) and

check that Verify(PK,i,τ) = mi.

2) Run the update algorithm over the new data and output

the updated commitment and the update information

(C′,U) ← VC.Update(C,m,m′,i).

ProofUpdate(C,Λj,c′i,i,U):

1) A third part auditor can first verify that, compared with

the stored counter t, the latest counter equals t + 1. Then,

run the proof of update algorithm of vector commitment to

compute an update proof Λj ←

VC.ProofUpdatepp(C,Λj,m′i,i,U) for the message at

position j, such that Λj is valid with respect to C′ which
contains m′ as the new message at position j. Here, U =

(m,m′,i) is the update information.

2) Verify the commitment C′, and its corresponding proof

Λi is also valid over message m′i.

UserRevocation(PK,i,τ):

1) The third part auditor can run the verification algorithm

of verifier-local revocation and return either valid or invalid

{0,1} ← VLR.Verify(gpk,RL,σ,M). Here, RL are a set of

revocation tokens.

4.2 A Concrete Scheme

In this section, we provide a concrete scheme from vector

commitment [25] and verifier-local revocation group

signature [27].

Setup(1k,DB):

Let k be a security parameter and DB = (i,mi) for 1 ≤ i ≤ q

be the database. The database DB = (i,mi) is shared by a

group of n users with only one data owner. The message

space is M = Zp.

1) Let G,GT be two bilinear groups of prime order p

equipped with a bilinear map e : G × G → GT, and g be a

random generator of G.

Randomly choose z1,...,zq ←R Zp. For all i = 1,...,q, set hi

= gzi. For all i,j = 1,...,q,i 6= j, set hi,j = gzizj. The data owner

runs the key generation algorithm of vector commitment

VC.KeyGen(1k,q) to obtain the public parameters PP = (p,

q, G, GT, H, g, ({hi})i∈ [q], {hi,j} i,j∈ [q],i=6 j) and the

message space M= Zp. By using a collision resistant hash

function H: {0,1}∗ → Zp, our scheme can be easily

extended to support arbitrary messages in {0,1}∗ .

2) Run the key generation of verifier-local revocation

VLR.KeyGen(1k,n). Let G1, G2 be cyclic group of prime

order p, and g1 be a generator of G1 and g2 be a generator

of G2. Consider bilinear groups (G1,G2) with isomorphism

ψ, where g1 ← ψ(g2). Select γ ←R Z
∗

p and set .

For each user, generate an SDH tuple (Ai,xi) by selecting xi
←R Z∗ p such that γ+xi 6= 0, and setting

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 26

. Then, set the group public key gpk =

(g1,g2,w). The private key is a tuple gsk[i] = (Ai,xi).

The revocation token corresponding to a user’s secret
key is grt[i] = Ai. Finally, the algorithm outputs (gpk,

gsk, grk). γ is only known to the private-key issuer (the

data owner).

3) Run the computing algorithm

VC.Compp(m1,...,mq) to compute commitment

m and auxiliary information aux = (m1,...,mq).

4) Employ hash functions H0 and H as random

oracles, with respective ranges G22 and Zp. For the t-th
time data updating, run the signing algorithm

VLR.Sign(gpk,gsk[i],{C(t − 1),C
t
,t}) over the

commitment. Assume that the input message is {C(t −

1),Ct,t} ∈ {0,1}∗ . Then, pick a random nonce r ←R Zp

and obtain generators (u,ˆ vˆ) ← H0(gpk,{C(t −

1),Ct,t},r) ∈ G22 and compute their images in G1 with u

← ψ(uˆ) and v ← ψ(vˆ) . Select an exponent α ←R Zp

and compute T1 ← uα and T2 ← Aivα. Set δ ← xiα ∈

Zp. Pick blinding values rα, rx, and rδ ←R Zp. Compute

helper values R1 ← urα, R2 ← e(T2,g2)rx · e(v,w)−rα ·

e(v,g2)−rδ and .

Compute a challenge value c ← H(gpk,(C(t−1),C

,t),r,T1,T2,R1,R2,R3) ∈ Zp using H. Compute sα = rα +

cα, sx = rx + cxi, and sδ = rδ + cδ ∈ Zp. Finally, output a

signature σt ← (r,T1,T2,c,sα,sx,sδ). Then, sends the

signature σt to the cloud storage server. If σt is valid, then

the server computes C(t) = σt · Ct. Also, the cloud

storage server adds the information of Σ(t) = (C(t −
1),Ct,t,σt) to aux. 5) Set public key parameter PK =

(pp,gpk,C(t −1),C(t)).

Query(PK, pp, aux,DB,i):

1) We assume that the current public key is PK =

(PP,gpk,C(t − 1),C(t)). A user runs the opening algorithm

VC.Open a proof

of the i-th
committed message and return τ = (mti,Λti,Σ(t)).

Verify(PK,i,τ):

1) On input a group public key gpk, a purported

signature σt, and the message {C(t − 1),Ct,t}, the auditor

first verify whether the signature is valid.

2) If τ = (mti,Λi,Σ(t)), run the verification algorithm

of vector commitment VC.Verpp(Cit,cti,i,Λti) to verify

that the equation holds.

The algorithm accepts when it outputs 1, which means that

Λti is a valid proof that Ct was created to a sequence

m1,...mq, such that m = mi.

Update(i,τ):

1) A group user first queries and verifies the database to

make sure the current database is valid.

2) If the user wanted to update mi to m′i, the user runs the

update algorithm VC.Update(C,m,m′,i) and outputs the

updated commitment C′ = C · him′−m and the updated

information U = (m,m′,i).

ProofUpdate(C,Λj,m′i,i,U):

1) The third part auditor can run the proof of update

algorithm of vector commitment to compute an update

proof Λj ← VC.ProofUpdatepp(C,Λj,m′,i,U) for the

message at position j, such that Λj is valid with respect to C′

which contains m′ as the new message at position j.

2) For the auditor who owns a proof Λj, the auditor uses

the update information U = (m,m′,i) to generate the proof of

update. If i 6= j,

compute

the updated commitment and the updated proof is Λ′j

= Λj · (him −m) zj = ,
compute the updated commitment C′ = C·him −m while do

not change the proof Λi. Verify the commitment C′ and its

corresponding proof Λi is also valid over message m′i.

UserRevocation(PK,i,τ):

1) To verify the validity of the signature, the auditor need to

conduct the signature check. The third part auditor runs the

verification algorithm of verifier-local revocation

VLR.Verify(gpk,RL,σ,M), M = C(t − 1),Ct,t. More

precisely, compute uˆ and vˆ and their image u

← ψ(uˆ) and v← ψ(vˆ) in G1. Derive R˜1 ← usα/T1c,
R˜2

← e(T2,g2)sx · e(v,w)−sα · e(v,g2)−sδ ·

(e(T2,w)/e(g1,g2))c and

 . Check the challenge that c =?

H(gpk,(C(t − 1),Ct,t),r,T1,T2,R˜1,R˜2,R˜3) and return either

valid or invalid. Then, conduct the revocation check.

2) For each element A ∈ RL, check whether A is

encoded in (T1,T2) by checking if e(T2/A,uˆ) =? e(T1,vˆ). If

no element of RL is encoded in (T1,T2), the signer of σ has
not been revoked. Here, RL is a set of revocation tokens.

4.3 Supporting Ciphertext Database

In cloud storage outsourcing environment, the outsourced

data is usually encrypted database, which is usually

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 27

implicitly assumed in the exiting academic research.

Actually, our scheme could support the auditing of

database of both plaintext and ciphertext database.

However, it is not straightforward to extend a scheme to

support encrypted database.

In order to achieve the confidentiality of the data record

mx, the client can use his/her secret key to encrypt each

mx using a encryption scheme. When there is only one

user (data owner) in the group, the user only needs to

choose a random secret key and encrypt the data using a

secure symmetric encryption scheme. However, when

the scheme needs to support multi-user data

modification, while at the same time keeping the shared

data encrypted, a shared secret key among group users

will result in single point failure problem. It means that
any group user (revoked or leave) leak the shared secret

key will break the confidentiality guarantee of the data.

To overcome the above problem, we need to adopt a

scheme, which could support group users data

modification. Luckily, Wu et al. [26] designed an

Asymmetric Group Key Agreement scheme (ASGKA).

The scheme has a nice property that, instead of a

common secret key, only a shared encryption key is

negotiated in an ASGKA protocol. Also, in the scheme,

the public key can be simultaneously used to verify

signatures and encrypt messages while any signature can
be used to decrypt ciphertext under this public key.

Using the bilinear pairings, the authors instantiate a one-

round ASGKA protocol tightly reduced to the decision

Bilinear Diffie-Hellman Exponentiation (BDHE)

assumption in the standard model. Thus, according to the

ASGKA protocol, we consider the case of encrypted

database (x,cx), where x is an index and cx is the

corresponding cipher value.

We provide the detailed changes upon our scheme to

support encrypted database.

1) In the Setup phase, the scheme has to run the key

agreement of ASGKA for the group users. Then, the

database DB = (i,mi) is encrypted by the group key

gpk of data owner. Finally, the stored database is a

ciphertext database DB = (i,ci).

2) In the second step of the Update phase, a group user

firstly decrypts the record ci using the ASGKA secret

key gsk[∗] to get plaintext database DB = (i,mi).

Then, update the data to m′i, and later encrypt the data

with the public key gpk of ASGKA scheme to get the
new encrypted database DB = (i,c′i).

4.4 Probabilistic Detection

Actually, the position binding property of vector

commitment of the scheme allows the cloud storage

server to prove the data item correctness of certain

position. Ateniese et. al. [10] figured out that the

sampling ability greatly reduces the overhead on the

server and provides high detection probability of server

misbehavior. Then, among the q data items, we assume that

the third part auditor randomly select x items out of the q-

block item database as the target item. In the database, only

y items of the database are incorrect. Then, if x, y and q
satisfy the specific relationship, the third part auditor could

provide a high possession detection ability over the

database. The result is interesting that when y is a fraction

of the total item number q, the detection probability of

server misbehavior is a constant amount of item. For

example, if y = 1% of q, then the third part auditor asks for

460 blocks and 300 blocks in order to achieve the detection

probability of at least 99% and 95%, respectively.

5. CONCLUSION

The primitive of verifiable database with efficient updates is

an important way to solve the problem of verifiable

outsourcing of storage. We propose a scheme to realize

efficient and secure data integrity auditing for share

dynamic data with multi-user modification. The scheme

vector commitment, Asymmetric Group Key Agreement

(AGKA) and group signatures with user revocation are

adopt to achieve the data integrity auditing of remote data.

Beside the public data auditing, the combining of the three

primitive enable our scheme to outsource ciphertext

database to remote cloud and support secure group users

revocation to shared dynamic data. We provide security
analysis of our scheme, and it shows that our scheme

provide data confidentiality for group users, and it is also

secure against the collusion attack from the cloud storage

server and revoked group users. Also, the performance

analysis shows that, compared with its relevant schemes,

our scheme is also efficient in different phases.

REFERENCES

[1] Amazon. (2007) Amazon simple storage service (amazon s3).

Amazon. [Online]. Available: http://aws.amazon.com/s3/

[2] Google. (2005) Google drive. Google. [Online]. Available:

http://drive.google.com/

[3] Dropbox. (2007) A file-storage and sharing service. Dropbox.

[Online]. Available: http://www.dropbox.com/ [4] Mozy. (2007) An

online, data, and computer backup software. EMC. [Online].

Available: http://www.dropbox.com/

[5] Bitcasa. (2011) Inifinite storage. Bitcasa. [Online]. Available:

http://www.bitcasa.com/

[6] Memopal. (2007) Online backup. Memopal. [Online]. Available:

http://www.memopal.com/

[7] M. A. et al., “Above the clouds: A berkeley view of cloud

computing,” Tech. Rep. UCBEECS, vol. 28, pp. 1–23, Feb. 2009.

[8] M. Rabin, “Efficient dispersal of information for security,” Journal of

the ACM (JACM), vol. 36(2), pp. 335–348, Apr. 1989.

[9] J. G. et al. (2006) The expanding digital universe: A forecast of

worldwide information growth through 2010. IDC. [Online].

Available: Whitepaper

[10] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable data possession at untrusted

stores,” in Proc. of ACM CCS, Virginia, USA, Oct. 2007, pp. 598–609.

[11] A. Juels and B. S. Kaliski, “Pors: Proofs of retrievability for large

files,” in Proc. of ACM CCS, Virginia, USA, Oct. 2007, pp. 584–597.

[12] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability:

theory and implementation,” in Proc. of CCSW 2009, llinois, USA,

Nov. 2009, pp. 43–54.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51104 28

[13] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via

hardness amplification,” in Proc. of TCC 2009, CA, USA, Mar.

2009, pp. 109–127.

[14] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Proofs of

retrievability via hardness amplification,” in Proc. of ESORICS

2009, Saint-Malo, France, Sep. 2009, pp. 355–370.

[15] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,

“Dynamic provable data possession,” in Proc. of ACM CCS,

Illinois, USA, Nov. 2009, pp. 213–222.

[16] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving

public auditing for data storage security in cloud computing,” in

Proc. of IEEE INFOCOM 2010, CA, USA, Mar. 2010, pp. 525–

533.

[17] J. Yuan and S. Yu, “Proofs of retrievability with public

verifiability and constant communication cost in cloud,” in Proc.

of International Workshop on Security in Cloud Computing,

Hangzhou, China, May 2013, pp. 19–26.

[18] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic

proofs of retrievability,” in Proc. of ACM CCS 2013, Berlin,

Germany, Nov. 2013, pp. 325–336.

[19] Cloud9. (2011) Your development environment, in the cloud.

Cloud9. [Online]. Available: https://c9.io/

[20] Codeanywhere. (2011) Online code editor. Codeanywhere.

[Online]. Available: https://codeanywhere.net/

[21] eXo Cloud IDE. (2002) Online code editor.

Cloud IDE. [Online]. Available: https://codenvy.com/

[22] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public

auditing for shared data in the cloud,” in Proc. of IEEE CLOUD

2012, Hawaii, USA, Jun. 2012, pp. 295–302.

[23] B. Wang, L. Baochun, and L. Hui, “Public auditing for shared

data with efficient user revocation in the cloud,” in Proc. of IEEE

INFOCOM 2013, Turin, Italy, Apr. 2013, pp. 2904–2912.

[24] J. Yuan and S. Yu, “Efficient public integrity checking for cloud

data sharing with multi-user modification,” in Proc. of IEEE

INFOCOM 2014, Toronto, Canada, Apr. 2014, pp. 2121–2129.

[25] D. Catalano and D. Fiore, “Vector commitments and their

applications,” in Public-Key Cryptography - PKC 2013, Nara,

Japan, Mar. 2013, pp. 55–72.

[26] Q. Wu, Y. Mu, W. Susilo, B. Qin, and J. Domingo-Ferrer,

“Asymmetric group key agreement,” in Proc. of EUROCRYPT

2009, Cologne, Germany, Apr. 2009, pp. 153–170.

[27] D. Boneh and H. Shacham, “Group signatures with verifierlocal

revocation,” in Proc. of ACM CCS, DC, USA, Oct. 2004, pp.

168– 177.

[28] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the

weil pairing,” in Proc. of Asiacrypt 2001, Gold Coast, Australia,

Dec. 2001, pp. 514–532.

[29] D. Boneh and X. Boyen, “Collision-free accumulators and

failstop signature schemes without trees,” in Proc. of

EUROCRYPT 2004, Interlaken, Switzerland, May 2004, pp. 56–

73.

[30] N. Baric and B. Pfitzman, “Collision-free accumulators and fail-

stop signature schemes without trees,” in Proc. of EUROCRYPT

1997, Konstanz, Germany, May 1997, pp. 480–494.

[31] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”

in Proc. of CRYPTO 2004, CA, USA, Aug. 2004, pp. 41–55.

[32] U. M. Maurer and S. Wolf, “Diffie-hellman oracles,” in Proc. of

CRYPTO 1996, CA, USA, Aug. 1996, pp. 268–282.

[33] F. Bao, R. Deng, and H. Zhu, “Variations of diffie-hellman

proble,” in Information and Communications Security,

Huhehaote, China, Oct. 2003, pp. 301–312.

[34] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable

computation over large database with incremental updates,” in

Proc. of ESORICS 2014, Wroclaw, Poland, Sep. 2014, pp. 148–

162.

[35] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly

verifiable databases with efficient updates,” to appear in IEEE

Transactions on Dependable and Secure Computing, Accepted.

[36] B. Lynn. (2006) The pairing-based cryptography library.

[Online]. Available: http://crypto.stanford.edu/pbc/

[37] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable

computing: Outsourcing computation to untrusted workers,” in

Proc. of CRYPTO 2010, CA, USA, Sep. 2010, pp. 465– 482.

[38] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proc. of ACM STOC 2009, Washington DC, USA, May 2009, pp.

169–178.

[39] C. Gentry and S. Halevi, “Implementing gentrys fullyhomomorphic

encryption scheme,” in Proc. of EUROCRYPT 2011, Tallinn,

Estonia, May 2011, pp. 129–148.

[40] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of

computation over large datasets,” in Proc. of CRYPTO 2011, CA,

USA, Aug. 2011, pp. 111–131.

[41] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of

computation on outsourced data,” in Proc. of ACM CCS 2013,

Berlin, Germany, Nov. 2013, pp. 863–874.

[42] D. Chaum and E. van Heyst, “Group signatures,” in Proc. of

EUROCRYPT 1991, Brighton, UK, Apr. 1991, pp. 257–265.

[43] E. Bresson and J. Stern, “Efficient revocation in group signatures,” in

Public-Key Cryptography - PKC 2001, Cheju Island, Korea, Feb.

2001, pp. 190–206.

